Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
J Biochem Mol Toxicol ; 38(4): e23677, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528715

RESUMO

The study investigated the potential association of the low-density lipoprotein (LDL) genome with endometrial cancer progression based on the Gene Expression Omnibus data set and The Cancer Genome Atlas data set. Differential and weighted gene coexpression network analysis was performed on endometrial cancer transcriptome datasets GSE9750 and GSE106191. The protein-protein interaction network was built using LDL-receptor proteins and the top 50 tumor-associated genes. Low-density lipoprotein-related receptors 5/6 (LRP5/6) in endometrial cancer tissues were correlated with oncogenes, cell cycle-related genes, and immunological checkpoints using Spearman correlation. MethPrimer predicted the LRP5/6 promoter CpG island. LRP2, LRP6, LRP8, LRP12, low-density lipoprotein receptor-related protein-associated protein, and LRP5 were major LDL-receptor-related genes associated with endometrial cancer. LRP5/6 was enriched in various cancer-related pathways and may be a key LDL-receptor-related gene in cancer progression. LRP5/6 may be involved in the proliferation process of endometrial cancer cells by promoting the expression of cell cycle-related genes. LRP5/6 may be involved in the proliferation of endometrial cancer cells by promoting the expression of cell cycle-related genes. LRP5/6 may promote the immune escape of cancer cells by promoting the expression of immune checkpoints, promoting endometrial cancer progression. The MethPrimer database predicted that the LRP5/6 promoter region contained many CpG islands, suggesting that DNA methylation can occur in the LRP5/6 promoter region. LRP5/6 may aggravate endometrial cancer by activating the phosphoinositide 3-kinase/protein kinase B pathway.


Assuntos
Neoplasias do Endométrio , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Humanos , Feminino , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fosfatidilinositol 3-Quinases , Receptores de LDL , Neoplasias do Endométrio/genética , Lipoproteínas LDL
2.
Clin Genet ; 105(6): 666-670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38385987

RESUMO

Low-density lipoprotein receptor-related protein 6 (LRP6) is a co-receptor of the Wnt signaling pathway, which plays an essential role in various biological activities during embryonic and postnatal development. LRP6 is exceptionally associated with rare diseases and always with autosomal dominant inheritance. Here we report a familial phenotype of high bone mass associated with skeletal anomalies and oligodontia but also persistent left superior vena cava, inguinal hernia, hepatic cysts, abnormal posterior fossa and genital malformations. Molecular analysis revealed a novel heterozygous variant, NM_002336.2: c.724T>C, p.(Trp242Arg), in affected individuals. This variant is located in the first ß-propellant motif of LRP6, to which sclerostin (SOST) and dickkopf1 (DKK1), two LRP6 co-receptor inhibitors and various Wnt ligands bind. According to the literature and integrating data from structural analysis, this variant distorts the binding of SOST and DKK1, thus leading to overactivation of Wnt signaling pathways involved in osteoblast differentiation. This novel heterozygous variant in LRP6 underlies the role of LRP6 in skeletal and dental disorders as well as, probably, cardiac, cerebral and genital developments.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Feminino , Fenótipo , Mutação/genética , Via de Sinalização Wnt/genética , Linhagem , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
3.
Int J Biol Sci ; 20(3): 916-936, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250152

RESUMO

The lipid synthesis of fatty acid (FA) represents a significant hallmark in the occurrence and progression of malignant tumor, which are associated with lymph node (LN) metastasis. Elucidation of the molecular mechanisms underlying LN metastasis could provide therapeutic strategies for cervical cancer (CCa). N6-Methyladenosine (m6A), the most prevalent and abundant RNA modification, exerts specific regulatory control over a series of oncogene expressions. This study demonstrated a clinical correlation between the upregulation of the m6A reader YTHDF3 and LN metastasis, thereby contributing to poor overall survival probability (OS) among CCa patients. The mechanistic investigation revealed that SREBF1 transcriptionally activated YTHDF3 expression by binding to its promoter. Functional experiments demonstrated that the upregulation of YTHDF3 significantly enhanced the in vitro proliferative, migratory, and invasive capacities of CCa cells, while also promoting lymphangiogenesis and facilitating LN metastasis in vivo. Mechanistically, the upregulation of LRP6 through YTHDF3-mediated m6A modification resulted in increased expression of FASN and ACC1, leading to both lipolysis of lipid droplets and synthesis of free fatty acid. Ultimately, this promoted fatty acid metabolism and enhanced LN metastasis by activating the LRP6-YAP-VEGF-C axis, which could induce lymphangiogenesis in CCa. Our study highlighted that YTHDF3 can serve as a promising therapeutic target and predictive biomarker for CCa patients with LN metastasis.


Assuntos
Metabolismo dos Lipídeos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteínas de Ligação a RNA , Neoplasias do Colo do Útero , Feminino , Humanos , Ácidos Graxos , Lipogênese , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Metástase Linfática , Neoplasias do Colo do Útero/genética , Proteínas de Ligação a RNA/genética
4.
Biochem Biophys Res Commun ; 695: 149441, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38176174

RESUMO

Low-density lipoprotein receptor-related protein 6 (LRP6) is a receptor protein for Wnt ligands. Yet, their role in immune cell regulation remains elusive. Here we demonstrated that genetic deletion of LRP6 in macrophages using LysM-cre Lrp6fl/fl (Lrp6MKO) mice showed differential inhibition of inflammation in the bleomycin (BLM)-induced lung injury model and B16F10 melanoma lung metastasis model. Lrp6MKO mice showed normal immune cell populations in the lung and circulating blood in homeostatic conditions. In the BLM-induced lung injury model, Lrp6MKO mice showed a decreased number of monocyte-derived alveolar macrophages, reduced collagen deposition and alpha-smooth muscle actin (αSMA) protein levels in the lung. In B16F10 lung metastasis model, Lrp6MKO mice reduced lung tumor foci. Monocytic and granulocytic-derived myeloid-derived suppressor cells (M-MDSCs and G-MDSCs) were increased in the lung. In G-MDSCs, hypoxia-inducible factor 1α (HIF1α)+ PDL1+ population was markedly decreased but not in M-MDSCs. Taken together, our results show that the role of LRP6 in macrophages is differential depending on the inflammation microenvironment in the lung.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Lesão Pulmonar , Neoplasias Pulmonares , Pneumonia , Animais , Camundongos , Bleomicina , Inflamação/genética , Inflamação/patologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pulmão/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Pneumonia/patologia , Microambiente Tumoral
5.
Aging (Albany NY) ; 16(2): 1484-1495, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226972

RESUMO

Renal cell carcinoma is the most common and most lethal genitourinary tumor. The causes of renal clear cell carcinoma are complex and the heterogeneity of the tumor tissue is high, so patient outcomes are not very satisfactory. Exploring biomarkers in the progression of renal clear cell carcinoma is crucial to improve the diagnosis and guide the treatment of renal clear cell carcinoma. LRP6 is a co-receptor of the Wnt/ß-catenin signaling pathway, which is involved in cell growth, inflammation and cell transformation through activation of the Wnt/ß-catenin signaling pathway. Abnormal expression of LRP6 is associated with the malignant phenotype, metastatic potential and poor prognosis of various tumors. In this study, we found that LRP6 was abnormally highly expressed in a variety of tumors and significantly correlated with microsatellite instability, tumor mutation burden, and immune cell infiltration and immune checkpoint expression in a variety of tumors. Moreover, we found that LRP6 was significantly associated with the prognosis of renal clear cell carcinoma. Further we found a significant correlation between LRP6 and the expression of m6A-related genes and ferroptosis-related genes. Finally, we also found a significant correlation between the expression of LRP6 and the sensitivity to common drugs used in kidney clear cell carcinoma treatment. These results suggest that LRP6 is likely to be a potential target for kidney clear cell carcinoma treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Via de Sinalização Wnt , Neoplasias Renais/genética , Prognóstico , Biomarcadores , Rim/metabolismo , beta Catenina/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
6.
Hormones (Athens) ; 22(3): 375-387, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37378808

RESUMO

PURPOSE: This research aimed to explore the regulatory molecular mechanism among circular RNA (circ)_0011373, microRNA (miR)-1271, and lipoprotein receptor-related protein 6 (LRP6) in papillary thyroid carcinoma (PTC). METHODS: Quantitative real-time PCR (qRT-PCR) assay was adopted to measure the expression of circ_0011373, miR-1271, and LRP6 mRNA. Furthermore, cell cycle distribution, apoptosis, migration and invasion were investigated by flow cytometry and transwell assay, respectively. The target relationship between miR-1271 and circ_0011373 or LRP6 was predicted by using the Starbase website and DIANA TOOL and verified by dual-luciferase reporter and RIP assay. Protein expression levels of LRP6, p-mTOR, mTOR, p-AKT, AKT, p-PI3K, and PI3K were tested by Western blot. The function of circ_0011373 on PTC tumor growth was validated by the xenograft tumor model in vivo. RESULTS: Circ_0011373 and LRP6 were upregulated, while miR-1271 was downregulated in PTC tissues and cell lines. Moreover, knockdown of circ_0011373 inhibited cell cycle, migration, and invasion and promoted apoptosis. Of particular importance was the fact that circ_0011373 directly interacted with miR-1271 and miR-1271 inhibitor was able to reverse the effect of circ_0011373 knockdown on PTC cell progression. Meanwhile, LRP6 was directly targeted by miR-1271, and its expression was positively regulated by circ_0011373. We further confirmed that miR-1271 overexpression suppressed cell cycle, migration, and invasion and enhanced apoptosis by regulating LRP6. In addition, circ_0011373 knockdown restrained PTC tumor growth in vivo. CONCLUSION: Circ_0011373 might be able to regulate PTC cell cycle, migration, invasion, and apoptosis by regulating the miR-1271/LRP6 axis.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteínas Proto-Oncogênicas c-akt , RNA Circular/genética , Neoplasias da Glândula Tireoide/genética , Fosfatidilinositol 3-Quinases , MicroRNAs/genética , Proliferação de Células/genética , Linhagem Celular Tumoral
7.
Molecules ; 28(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175248

RESUMO

Low-density lipoprotein receptor-related protein 6 (LRP6), a member of the low-density lipoprotein receptor (LDLR) family, displays a unique structure and ligand-binding function. As a co-receptor of the Wnt/ß-catenin signaling pathway, LRP6 is a novel therapeutic target that plays an important role in the regulation of cardiovascular disease, lipid metabolism, tumorigenesis, and some classical signals. By using capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX), with recombinant human LRP-6 as the target, four candidate aptamers with a stem-loop structure were selected from an ssDNA library-AptLRP6-A1, AptLRP6-A2, AptLRP6-A3, and AptLRP6-A4. The equilibrium dissociation constant KD values between these aptamers and the LRP6 protein were in the range of 0.105 to 1.279 µmol/L, as determined by CE-LIF analysis. Their affinities and specificities were further determined by the gold nanoparticle (AuNP) colorimetric method. Among them, AptLRP6-A3 showed the highest affinity with LRP6-overexpressed human breast cancer cells. Therefore, the LRP6 aptamer identified in this study constitutes a promising modality for the rapid diagnosis and treatment of LRP6-related diseases.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Lipoproteínas LDL , Ouro , DNA de Cadeia Simples , Aptâmeros de Nucleotídeos/química
8.
Leuk Lymphoma ; 64(6): 1151-1160, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092573

RESUMO

Low-density lipoprotein receptor-related protein-6 (LRP6) is overexpressed in various cancers. The small molecule salinomycin sodium inhibits LRP6. We observed a higher proportion of subjects with non-germinal center B (non-GCB) subtypes having high LRP6 expression than those with GCB subtypes by immunohistochemistry. The PCR and Western blot assays demonstrated increased LRP6 expression in non-GCB subtype cells. In addition, CCK-8 assays and transwell cell migration assays revealed that salinomycin sodium exhibited dose- and time-dependent inhibition of proliferation and migration in non-GCB subtype cells. Furthermore, Western blot assays showed that salinomycin sodium decreased the expression of Bcl2, while increasing the expression of Bax. Additionally, salinomycin sodium suppressed LRP6 expression, blocked LRP6 phosphorylation, and inhibited the Wnt/ß-catenin and mTORC1 signaling pathways. Our results suggest that LRP6 is highly expressed in non-GCB subtype. Furthermore, salinomycin sodium inhibited LRP6 expression and the Wnt/ß-catenin and mTORC1 signaling in non-GCB subtype cells, and displayed potent anticancer activity.


Assuntos
Linfoma de Células B , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Sódio , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
9.
Genes (Basel) ; 14(4)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37107647

RESUMO

Mammalian preimplantation development depends on the interaction between embryonic autocrine and maternal paracrine signaling. Despite the robust independence of preimplantation embryos, oviductal factors are thought to be critical to pregnancy success. However, how oviductal factors regulate embryonic development and the underlying mechanism remain unknown. In the present study, focusing on WNT signaling, which has been reported to be essential for developmental reprogramming after fertilization, we analyzed the receptor-ligand repertoire of preimplantation embryonic WNT signaling, and identified that the WNT co-receptor LRP6 is necessary for early cleavage and has a prolonged effect on preimplantation development. LRP6 inhibition significantly impeded zygotic genome activation and disrupted relevant epigenetic reprogramming. Focusing on the potential oviductal WNT ligands, we found WNT2 as the candidate interacting with embryonic LRP6. More importantly, we found that WNT2 supplementation in culture medium significantly promoted zygotic genome activation (ZGA) and improved blastocyst formation and quality following in vitro fertilization (IVF). In addition, WNT2 supplementation significantly improved implantation rate and pregnancy outcomes following embryo transfer. Collectively, our findings not only provide novel insight into how maternal factors regulate preimplantation development through maternal-embryonic communication, but they also propose a promising strategy for improving current IVF systems.


Assuntos
Desenvolvimento Embrionário , Zigoto , Gravidez , Humanos , Animais , Feminino , Ligantes , Desenvolvimento Embrionário/genética , Implantação do Embrião , Oviductos , Mamíferos , Proteína Wnt2/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
10.
Cancer Biother Radiopharm ; 38(10): 674-683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32907351

RESUMO

Background: Hepatocellular carcinoma (HCC) is the most common form of liver cancer. Circular RNAs (circRNAs) play a vital role in cancer development and progression. This study investigated the role and potential mechanism of circRNA filamin binding LIM protein 1 (circFBLIM1) in HCC. Methods: Exosomes were identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot assay. The levels of circFBLIM1, miR-338, and low-density lipoprotein receptor-related protein 6 (LRP6) were measured by quantitative real-time polymerase chain reaction or Western blot. Glycolysis was analyzed by detecting glucose consumption, lactate production, ATP level, extracellular acidification rate (ECAR), and oxygen consumption rate (OCR). Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Cell apoptosis was detected by flow cytometry. Xenograft assay was performed to analyze tumor growth in vivo. The interaction among circFBLIM1, miR-338, and LRP6 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. This study was approved by the Institutional Review Board of the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine. Results: CircFBLIM1 was highly expressed in HCC serum exosomes and HCC cells. Inhibition of circFBLIM1 confined HCC glycolysis and progression. CircFBLIM1 knockdown blocked tumorigenesis in vivo. CircFBLIM1 was a sponge of miR-338 and promoted HCC progression and glycolysis by regulating miR-338. Moreover, miR-338 suppressed HCC progression and glycolysis via targeting LRP6. Mechanistically, circFBLIM1 functioned as an miR-338 sponge to upregulate LRP6. Conclusion: CircFBLIM1 facilitated HCC progression and glycolysis via modulating the miR-338/LRP6 axis, which may provide promising therapeutic targets for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Apoptose , MicroRNAs/genética , Proliferação de Células , Linhagem Celular Tumoral , Glicólise
11.
Cancer Med ; 12(1): 445-458, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35655441

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) have critical functions within esophageal squamous cell carcinoma (ESCC). However, the function and mechanism underlying ESCC-associated lncRNA-1 (ESCCAL-1) in ESCC tumorigenesis have not been well clarified. METHODS: ESCCAL-1, miR-590 and LRP6 were quantified using qRT-PCR. Cell viability, migration and invasion abilities were measured using CCK-8 assay and transwell assays. The protein pression was determined with western blot assay. The xenograft model assays were used to examine the impact of ESCCAL-1 on tumorigenic effect in vivo. Direct relationships among ESCCAL-1, miR-590 and LRP6 were confirmed using dual-luciferase reporter assays. RESULTS: The present work discovered the ESCCAL-1 up-regulation within ESCC. Furthermore, ESCCAL-1 was found to interact with miR-590 and consequently restrict its expression. Functionally, knocking down ESCCAL-1 or over-expressing miR-590 hindered ESCC cell growth, invasion, and migration in vitro. Moreover, inhibition of miR-590 could reverse the effect of knockdown of ESCCAL-1 on cells. Importantly, it was confirmed that LRP6 was miR-590's downstream target and LRP6 over-expression also partly abolished the role of miR-590 overexpression in ESCC cells. CONCLUSION: We have uncovered a novel regulatory network comprising aberrant interaction of ESCCAL-1/miR-590/LRP6 participated in ESCC progression.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Esofágicas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
12.
Cells ; 11(24)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36552732

RESUMO

Canonical Wnt signaling is involved in skeletal muscle cell biology. The exact way in which this pathway exerts its contribution to myogenesis or neuromuscular junctions (NMJ) is a matter of debate. Next to the common co-receptors of canonical Wnt signaling, Lrp5 and Lrp6, the receptor tyrosine kinase MuSK was reported to bind at NMJs WNT glycoproteins by its extracellular cysteine-rich domain. Previously, we reported canonical Wnt signaling being active in fast muscle fiber types. Here, we used conditional Lrp5 or Lrp6 knockout mice to investigate the role of these receptors in muscle cells. Conditional double knockout mice died around E13 likely due to ectopic expression of the Cre recombinase. Phenotypes of single conditional knockout mice point to a very divergent role for the two receptors. First, muscle fiber type distribution and size were changed. Second, canonical Wnt signaling reporter mice suggested less signaling activity in the absence of Lrps. Third, expression of several myogenic marker genes was changed. Fourth, NMJs were of fragmented phenotype. Fifth, recordings revealed impaired neuromuscular transmission. In sum, our data show fundamental differences in absence of each of the Lrp co-receptors and suggest a differentiated view of canonical Wnt signaling pathway involvement in adult skeletal muscle cells.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Junção Neuromuscular , Receptores Wnt , Animais , Camundongos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Knockout , Músculo Esquelético/metabolismo , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , Receptores Wnt/genética , Receptores Wnt/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(46): e2207327119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343233

RESUMO

Developing peptide-based tools to fine-tune growth signaling pathways, in particular molecules with exquisite selectivity and high affinities, opens up opportunities for cellular reprogramming in tissue regeneration. Here, we present a library based on cystine-knot peptides (CKPs) that incorporate multiple loops for randomization and selection via directed evolution. Resulting binders could be assembled into multimeric structures to fine-tune cellular signaling. An example is presented for the Wnt pathway, which plays a key role in the homeostasis and regeneration of tissues such as lung, skin, and intestine. We discovered picomolar affinity CKP agonists of the human LPR6 receptor by exploring the limits of the topological manipulation of LRP6 dimerization. Structural analyses revealed that the agonists bind at the first ß-propeller domain of LRP6, mimicking the natural Wnt inhibitors DKK1 and SOST. However, the CKP agonists exhibit a different mode of action as they amplify the signaling of natural Wnt ligands but do not activate the pathway by themselves. In an alveolosphere organoid model, the CKP agonists induced alveolar stem cell activity. They also stimulated growth in primary human intestinal organoids. The approach described here advances the important frontier of next-generation agonist design and could be applied to other signaling pathways to discover tunable agonist ligands.


Assuntos
Via de Sinalização Wnt , beta Catenina , Humanos , beta Catenina/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas Wnt/metabolismo , Cistina , Ligantes , Peptídeos
14.
Arch Oral Biol ; 142: 105514, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35961235

RESUMO

OBJECTIVE: The objective of this study was to investigate molecular etiologies of oral exostoses and dental anomalies in 14 patients from eight families. METHODS: Oral and radiographic examinations were performed on every patient. Whole exome and Sanger sequencing were performed on DNA of the patients, the unaffected parents and unaffected siblings. LRP6 mutant proteins were modeled and analyzed. RESULTS: Five mutations in LRP6, including four missense (p.Glu72Lys, p.Lys82Asn, Tyr418His, and p.Ile773Val) and one nonsense mutation (p.Arg32Ter), were identified. These mutations have not been reported to be associated with dental anomalies or oral exostoses. Oral features included a variety of oral exostoses (7 of the 14 patients), root defects (6 of the 14 patients), and tooth agenesis (5 of the 14 patients). Less common dental anomalies included microdontia, tooth fusion, odontomas, and mesiodens. Analysis of the protein models of the five LRP6 mutations shed light on their likely impact on LRP6 protein structure and function. CONCLUSION: Fourteen patients with five LRP6 mutations, including two recurrent mutations and three novel ones, are reported. Our study shows for the first time that mutations in LRP6 are associated with mesiodens, fusion of teeth, odontomas, microdontia, long roots, molars with unseparated roots, and taurodontism.


Assuntos
Exostose , Odontoma , Anormalidades Dentárias , Dente Supranumerário , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mutação , Anormalidades Dentárias/genética , Via de Sinalização Wnt
15.
J Immunol ; 209(2): 368-378, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35760519

RESUMO

Extraintestinal manifestations are common in inflammatory bowel disease and involve several organs, including the kidney. However, the mechanisms responsible for renal manifestation in inflammatory bowel disease are not known. In this study, we show that the Wnt-lipoprotein receptor-related proteins 5 and 6 (LRP5/6) signaling pathway in macrophages plays a critical role in regulating colitis-associated systemic inflammation and renal injury in a murine dextran sodium sulfate-induced colitis model. Conditional deletion of the Wnt coreceptors LRP5/6 in macrophages in mice results in enhanced susceptibility to dextran sodium sulfate colitis-induced systemic inflammation and acute kidney injury (AKI). Furthermore, our studies show that aggravated colitis-associated systemic inflammation and AKI observed in LRP5/6LysM mice are due to increased bacterial translocation to extraintestinal sites and microbiota-dependent increased proinflammatory cytokine levels in the kidney. Conversely, depletion of the gut microbiota mitigated colitis-associated systemic inflammation and AKI in LRP5/6LysM mice. Mechanistically, LRP5/6-deficient macrophages were hyperresponsive to TLR ligands and produced higher levels of proinflammatory cytokines, which are associated with increased activation of MAPKs. These results reveal how the Wnt-LRP5/6 signaling in macrophages controls colitis-induced systemic inflammation and AKI.


Assuntos
Injúria Renal Aguda , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Injúria Renal Aguda/metabolismo , Animais , Colite/induzido quimicamente , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Rim/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt/genética
16.
Dis Model Mech ; 15(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35514236

RESUMO

Neural tube defects (NTDs) are among the common and severe birth defects with poorly understood etiology. Mutations in the Wnt co-receptor LRP6 are associated with NTDs in humans. Either gain-of-function (GOF) or loss-of-function (LOF) mutations of Lrp6 can cause NTDs in mice. NTDs in Lrp6-GOF mutants may be attributed to altered ß-catenin-independent noncanonical Wnt signaling. However, the mechanisms underlying NTDs in Lrp6-LOF mutants and the role of Lrp6-mediated canonical Wnt/ß-catenin signaling in neural tube closure remain unresolved. We previously demonstrated that ß-catenin signaling is required for posterior neuropore (PNP) closure. In the current study, conditional ablation of Lrp6 in dorsal PNP caused spinal NTDs with diminished activities of Wnt/ß-catenin signaling and its downstream target gene Pax3, which is required for PNP closure. ß-catenin-GOF rescued NTDs in Lrp6-LOF mutants. Moreover, maternal supplementation of a Wnt/ß-catenin signaling agonist reduced the frequency and severity of spinal NTDs in Lrp6-LOF mutants by restoring Pax3 expression. Together, these results demonstrate the essential role of Lrp6-mediated Wnt/ß-catenin signaling in PNP closure, which could also provide a therapeutic target for NTD intervention through manipulation of canonical Wnt/ß-catenin signaling activities.


Assuntos
Defeitos do Tubo Neural , Via de Sinalização Wnt , Animais , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Tubo Neural/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
17.
J Exp Clin Cancer Res ; 41(1): 133, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395804

RESUMO

BACKGROUND: Cancer stem-like cells (CSCs) play a pivotal role in lung tumor formation and progression. Nerve injury-induced protein 1 (Ninjurin1, Ninj1) has been implicated in lung cancer; however, the pathological role of Ninj1 in the context of lung tumorigenesis remains largely unknown. METHODS: The role of Ninj1 in the survival of non-small cell lung cancer (NSCLC) CSCs within microenvironments exhibiting hazardous conditions was assessed by utilizing patient tissues and transgenic mouse models where Ninj1 repression and oncogenic KrasG12D/+ or carcinogen-induced genetic changes were induced in putative pulmonary stem cells (SCs). Additionally, NSCLC cell lines and primary cultures of patient-derived tumors, particularly Ninj1high and Ninj1low subpopulations and those with gain- or loss-of-Ninj1 expression, and also publicly available data were all used to assess the role of Ninj1 in lung tumorigenesis. RESULTS: Ninj1 expression is elevated in various human NSCLC cell lines and tumors, and elevated expression of this protein can serve as a biomarker for poor prognosis in patients with NSCLC. Elevated Ninj1 expression in pulmonary SCs with oncogenic changes promotes lung tumor growth in mice. Ninj1high subpopulations within NSCLC cell lines, patient-derived tumors, and NSCLC cells with gain-of-Ninj1 expression exhibited CSC-associated phenotypes and significantly enhanced survival capacities in vitro and in vivo in the presence of various cell death inducers. Mechanistically, Ninj1 forms an assembly with lipoprotein receptor-related protein 6 (LRP6) through its extracellular N-terminal domain and recruits Frizzled2 (FZD2) and various downstream signaling mediators, ultimately resulting in transcriptional upregulation of target genes of the LRP6/ß-catenin signaling pathway. CONCLUSIONS: Ninj1 may act as a driver of lung tumor formation and progression by protecting NSCLC CSCs from hostile microenvironments through ligand-independent activation of LRP6/ß-catenin signaling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Moléculas de Adesão Celular Neuronais , Neoplasias Pulmonares , Fatores de Crescimento Neural , Via de Sinalização Wnt , Animais , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular Tumoral , Receptores Frizzled , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Neoplasias Pulmonares/patologia , Camundongos , Fatores de Crescimento Neural/genética , Microambiente Tumoral , beta Catenina/metabolismo
18.
J Biol Chem ; 298(6): 101986, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35487243

RESUMO

Aberrant activation or suppression of WNT/ß-catenin signaling contributes to cancer initiation and progression, neurodegeneration, and bone disease. However, despite great need and more than 40 years of research, targeted therapies for the WNT pathway have yet to be fully realized. Kinases are considered exceptionally druggable and occupy key nodes within the WNT signaling network, but several pathway-relevant kinases remain understudied and "dark." Here, we studied the function of the casein kinase 1γ (CSNK1γ) subfamily of human kinases and their roles in WNT signaling. miniTurbo-based proximity biotinylation and mass spectrometry analysis of CSNK1γ1, CSNK1γ2, and CSNK1γ3 revealed numerous components of the ß-catenin-dependent and ß-catenin-independent WNT pathways. In gain-of-function experiments, we found that CSNK1γ3 but not CSNK1γ1 or CSNK1γ2 activated ß-catenin-dependent WNT signaling, with minimal effect on other signaling pathways. We also show that within the family, CSNK1γ3 expression uniquely induced low-density lipoprotein receptor-related protein 6 phosphorylation, which mediates downstream WNT signaling transduction. Conversely, siRNA-mediated silencing of CSNK1γ3 alone had no impact on WNT signaling, though cosilencing of all three family members decreased WNT pathway activity. Finally, we characterized two moderately selective and potent small-molecule inhibitors of the CSNK1γ family. We show that these inhibitors and a CSNK1γ3 kinase-dead mutant suppressed but did not eliminate WNT-driven low-density lipoprotein receptor-related protein 6 phosphorylation and ß-catenin stabilization. Our data suggest that while CSNK1γ3 expression uniquely drives pathway activity, potential functional redundancy within the family necessitates loss of all three family members to suppress the WNT signaling pathway.


Assuntos
Caseína Quinase I , Via de Sinalização Wnt , beta Catenina , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fosforilação , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
19.
Oncogene ; 41(16): 2390-2403, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35277657

RESUMO

Breast cancer stem cells (BCSCs) are the main drivers of recurrence and metastasis. However, commonly used drugs rarely target BCSCs. Via screenings, we found that Salt-inducible kinase 2 (SIK2) participated in breast cancer (BC) stemness maintenance and zebrafish embryos development. SIK2 was upregulated in recurrence samples. Knockdown of SIK2 expression reduced the proportion of BCSCs and the tumor initiation of BC cells. Mechanistically, SIK2, phosphorylated by CK1α, directly phosphorylated LRP6 in a SIK2 kinase activity-dependent manner, leading to Wnt/ß-catenin signaling pathway activation. ARN-3236 and HG-9-91-01, inhibitors of SIK2, inhibited LRP6 phosphorylation and ß-catenin accumulation and disturbed stemness maintenance. In addition, the SIK2-activated Wnt/ß-catenin signaling led to induction of IDH1 expression, causing metabolic reprogramming in BC cells. These findings demonstrate a novel mechanism whereby Wnt/ß-catenin signaling pathway is regulated by different kinases in response to metabolic requirement of CSCs, and suggest that SIK2 inhibition may potentially be a strategy for eliminating BCSCs.


Assuntos
Neoplasias da Mama , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteínas Serina-Treonina Quinases , Via de Sinalização Wnt , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peixe-Zebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
20.
FASEB J ; 36(3): e22185, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35133032

RESUMO

FGF19/FGF15 is an endocrine regulator of hepatic bile salt and lipid metabolism, which has shown promising effects in the treatment of NASH in clinical trials. FGF19/15 is transcribed and released from enterocytes of the small intestine into enterohepatic circulation in response to bile-induced FXR activation. Previously, the TSS of FGF19 was identified to bind Wnt-regulated TCF7L2/encoded transcription factor TCF4 in colorectal cancer cells. Impaired Wnt signaling and specifical loss of function of its coreceptor LRP6 have been associated with NASH. We, therefore, examined if TCF7L2/TCF4 upregulates Fgf19 in the small intestine and restrains NASH through gut-liver crosstalk. We examined the mice globally overexpressing, haploinsufficient, and conditional knockout models of TCF7L2 in the intestinal epithelium. The TCF7L2+/- mice exhibited increased plasma bile salts and lipids and developed diet-induced fatty liver disease while mice globally overexpressing TCF7L2 were protected against these traits. Comprehensive in vivo analysis revealed that TCF7L2 transcriptionally upregulates FGF15 in the gut, leading to reduced bile synthesis and diminished intestinal lipid uptake. Accordingly, VilinCreert2 ; Tcf7L2fl/fl mice showed reduced Fgf19 in the ileum, and increased plasma bile. The global overexpression of TCF7L2 in mice with metabolic syndrome-linked LRP6R611C substitution rescued the fatty liver and fibrosis in the latter. Strikingly, the hepatic levels of TCF4 were reduced and CYP7a1 was increased in human NASH, indicating the relevance of TCF4-dependent regulation of bile synthesis to human disease. These studies identify the critical role of TCF4 as an upstream regulator of the FGF15-mediated gut-liver crosstalk that maintains bile and liver triglyceride homeostasis.


Assuntos
Ácidos e Sais Biliares/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Íleo/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Homeostase , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA